

High-efficiency, waterproof, UV and scratch-resistant solar panel for industrial IoT

Features

- IPX7 waterproof rated œ
- 10+ years UV exposure testing œ
- Third-party agency qualification œ
- 21.5% high-efficiency Sunpower solar cells œ
- Black matte appearance ⊕
- Low friction, anti-dust surface

Applications

- **Asset Tracking**
- Tank monitoring
- Agriculture
- **Pipeline sensors** • **Smart Cities**
- Weather Stations LoRa Nodes
- **Smart Home**
- Level monitoring
- Lighting

Symbol	Parameter	Nominal	Expected ¹	Unit
W _P	Max power (mpp)	2.38	2.31	W
V _P	Voltage @ mpp	7.09	6.84	V
I _P	Current @ mpp	0.34	4 0.29	
V _{oc}	Open-circuit voltage	8.59	8.34	V
I _{sc}	Short-circuit current	0.37	0.33	Α
η Cell efficiency		21.5 -		%

Electrical Characteristics

1 — Expected values are adjusted for real-world losses that include cutting of cells, imperfect transmissivity of the EVA and ETFE encapsulation layers, and the tolerance of the lowest performing cell piece in the series.

Key Links

- Panel Technical Drawing ⊕
- **Related Products Overview** œ
- Testing Review of ETFE Material Stack

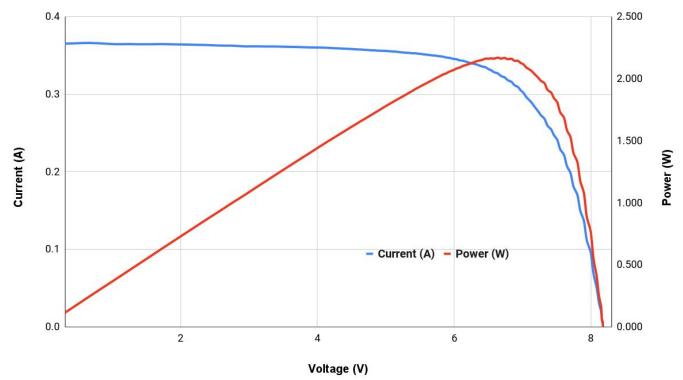
Description

P126 is a durable, high-performance ETFE solar panel designed for industrial IoT applications. It is lightweight, efficient, and cost-effective. SMT ETFE panels are advantageous when size or weight is constrained, long lifetimes are desired, and strict quality and dimensional tolerances must be maintained.

Voltaic ETFE panels are manufactured using a strictly sourced and qualified material stack. They are third-party tested for the equivalent of 10+ years of UV exposure in addition to thermal cycling, vibration stresses, and exposure to chemicals and oils. They are used in a number of ATEX applications.

Mechanical Characteristics

- **Dimensions:** 136 x 112 x 3.1 mm
- Weight: 79 g G
- Standard Tolerance: ± 0.5 mm œ
- Compliance: RoHS and REACH G
- Testing: relevant sections of IEC 61215, SAE œ [1455, and IEC 60529
- œ Mounting: G110 VHB gasket
- **Operating Temperature:** -40°C to 85°C ⊕ Cable: 3.5x1.1mm jack



Electrical Characteristics

Current-Voltage Characteristics

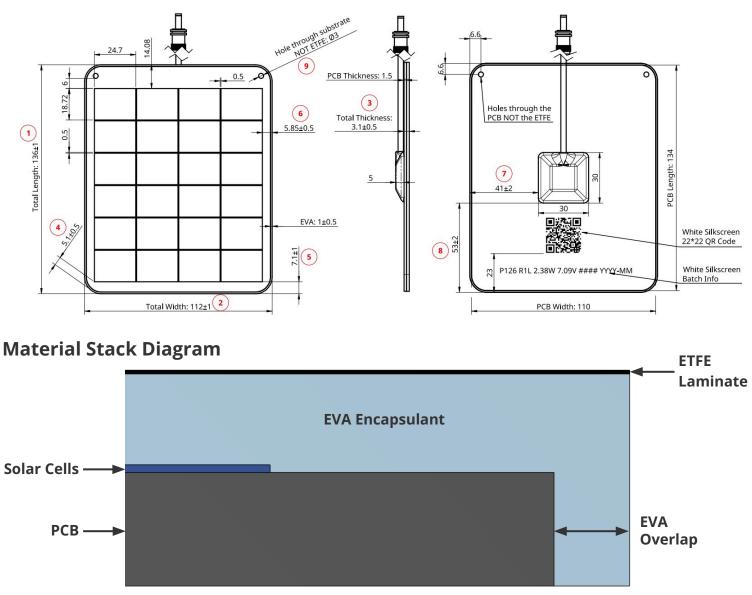
1 — Data collected at STC (1,000 W/m², 25°C)

The following graph is a representative, real-world IV curve of the P126 at STC¹. IV Curves are taken outdoors using a calibrated light meter. Nominal values are calculated based on the theoretical efficiency of solar cells. Expected values account for real-world conditions seen after cell cutting and lamination.

Revision History

This panel is periodically revised to use the latest and most cost-effective solar cell technology. Nominal specifications of each revision are detailed here. Mechanical dimensions and electrical specifications are maintained across versions so that the panel remains as a stocked, drop-in solution for production devices.

Revision ²	W _P (W)	V _P (V)	I _P (A)	V _{oc} (V)	I _{sc} (A)	Solar Cell
R1L	2.38	7.09	0.34	8.59	0.37	SunPower 21.5% Maxeon Gen V Ø211 - Ln
R1K	2.61	7.33	0.36	8.69	0.37	SunPower 24% Maxeon Gen III Ø166 - Me3 (Avg)
R1H	2.47	7.09	0.35	8.76	0.38	SunPower 22.6% Maxeon Gen V Ø211 - Mn1
R1F	2.45	7.09	0.36	8.76	0.38	SunPower 22.6% Maxeon Gen V Ø211 - Mn1
R1E	2.37	7.28	0.33	8.51	0.36	SunPower 22.7% Maxeon Gen III Ø166 - Je3A (Avg)
R1D	2.37	7.28	0.33	8.51	0.36	SunPower 22.7% Maxeon Gen III Ø166 - Je3A (Avg)


2 — Unreleased revisions have been omitted from the table

P126 Datasheet

Mechanical Characteristics

Construction Specifications

SMT ETFE solar panels consist of laser-cut Sunpower solar cells surface-mounted onto a double-sided PCB. The cells are encapsulated with an EVA adhesive and laminated with a layer of textured ETFE. The gap between the cell edge and panel edges provides a buffer against moisture ingress and potential delamination.

Voltaic's ETFE material stack has passed mechanical stress tests referencing IEC 61215, SAE J1455, IEC 60529, MIL-STD 810H, AAR-S-9401, and IEC 62262 IK08/09. Performed by multiple third-party agencies, these tests include accelerated aging (UV exposure), temperature and humidity cycling, damp heat, thermal shock, mechanical shock, impact, vibration, ingress, and exposure to chemicals and oils.